
MANUSCRIPT SUBMISSION FOR IEEE TRANSACTIONS ON GEOSCIENCES AND REMOTE SENSING 1

Virtual Sensors: Using Data Mining Techniques to
Efficiently Estimate Remote Sensing Spectra

Ashok N. Srivastava,Member, IEEE,Nikunj C. Oza,Member, IEEE,and Julienne Stroeve,Member, IEEE

Abstract— Various instruments are used to create images of
the Earth and other objects in the universe in a diverse set
of wavelength bands with the aim of understanding natural
phenomenon. These instruments are sometimes built in a phased
approach, with some measurement capabilities being added
in later phases. In other cases, there may not be a planned
increase in measurement capability, but technology may mature
to the point that it offers new measurement capabilities that
were not available before. In still other cases, detailed spectral
measurements may be too costly to perform on a large sample.
Thus, lower resolution instruments with lower associated cost
may be used to take the majority of measurements. Higher
resolution instruments, with a higher associated cost may be
used to take only a small fraction of the measurements in a
given area. Many applied science questions that are relevant to
the remote sensing community need to be addressed by analyzing
enormous amounts of data that were generated from instruments
with disparate measurement capability. This paper addresses this
problem by demonstrating methods to produce high accuracy
estimates of spectra with an associated measure of uncertainty
from data that is perhaps nonlinearly correlated with the spectra.
We call this type of an estimator a Virtual Sensor because it
predicts, with a measure of uncertainty, unmeasured spectral
phenomenon.

Index Terms— Data Mining, Neural Networks, Support Vector
Machine, Kernel Methods, Remote Sensing.

I. I NTRODUCTION

T HIS paper describes the development of data mining
algorithms that learn to estimate unobserved spectra from

remote sensing data. For purposes of the discussion presented
here, we will model the data as matrices of time series
(following the notation in [1]). The spatiotemporal random
function Z(u, λ, t) is modelled as a finite numbern of spa-
tially correlated time series with the following representation:

Z(u, λ, t) = [Zu(λ, t)] (1)

= [Zu1(λ, t), Zu2(λ, t), ..., Zun(λ, t)]T

In Equation 1,u represents the spatial coordinate,λ repre-
sents the vector of measured wavelength(s), andt represents
time. The superscriptT indicates the transpose operator. If
multiple wavelengths are measured, then eachZi is actually a
matrix, and the functionZ(u, λ, t) represents a data cube of
size(n×Λ×T), where these symbols represent the number of
spatial locations, the total number of measured wavelengths,

Manuscript received March 15, 2004; revised November 18, 2002. This
work was supported by the NASA Intelligent Systems Intelligent Data
Understanding Program.

A. N. Srivastava and N. C. Oza are at the NASA Ames Research Center.
J. Stroeve is with the National Snow and Ice Data Center

and the total number of time samples, respectively. In this
notation, the spatial coordinateu represents the coordinates
(or index) of a measurement at a particular location in the
field of view and is not in any way related to the distributed
nature of the data centers. Conceptually, the equation above
describes a set ofn (Λ × T) matrices. In the event that the
spatial coordinate describes adjacent pixels, it is useful to think
of Equation 1 as describing a time series of data cubes (spectral
images) of sizen× n× Λ.

Consider a situation where one is given a sensorS1 which
takes k spectral measurements in wavelength bandsB1 =
{λ1, λ2, . . . , λk} at time t1. Suppose that we have another
sensorS2 which has a set of spectral measurements taken
at time t2, B2 = {λ1, λ2, . . . , λk, λk+1, λk+2, . . . , λk+l} that
partially overlaps the spectral features contained inB1 in
terms of power in the spectral bands. Thus, we would have
B = B1 \ B2 = {λk+1, λk+2, . . . , λk+l} representing the
common spectral measurements. Note that these measurements
are common only in their power In this situation, we investi-
gate the problem of building an estimatorΓ(Z(B)) that best
approximates the joint distributionP (Z(B)|Z(B1)). Thus, we
would have:

Γ(Z(B)) ≈ P (Z(B)|Z(B1)) (2)

The value of building an estimator forP is clear particularly
in situations where one sensor has been in operation for a
much longer period of time than another. The first sensor may
have fewer spectral channels in which measurements are taken
compared to the newer sensor. However, it may be of scientific
value to be able to estimate what the spectral measurements
in wavelengthsB would have been had the first sensor had
the measurement capability.

The joint distribution given byP (Z(B)|Z(B1)) above
contains all necessary information to recover the underlying
structure captured by the sensorS2. If perfect reconstruction of
this joint distribution were possible, we would no longer need
sensorS2 because all relevant information could be generated
from the smaller subset of spectral measurementsB1 and the
estimatorΓ. Of course, such estimation is often extremely
difficult because there is not sufficient information in the bands
B1 to perfectly reconstruct the distribution. Also, in many
cases, the joint distribution cannot be modelled properly using
parametric representations of the probability distribution since
that may require a significant amount of domain knowledge
and may be a function of the ground cover, climate, sun
position, time of year, and numerous other factors.

In this paper, we describe methods to estimate the first
moments of this distribution. Some methods that we use allow

MANUSCRIPT SUBMISSION FOR IEEE TRANSACTIONS ON GEOSCIENCES AND REMOTE SENSING 2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

2

4

6

8

10

12

Wavelength (B
1
 and B

2
)

P
ow

er
, Z

(B
)

Spectral measurements
from Sensor S2 (dotted lines)

Sensor measurements
from Sensor S1 (solid lines)

We would like to estimate
the output of Sensor S1
for this wavelength.

Fig. 1. This figure helps illustrate the need for a Virtual Sensor. We have
spectral measurements from two sensorsS1 andS2, (solid and dotted lines,
respectively). We wish to estimate the output of sensorS1 for a wavelength
where there is no actual measurement from the sensor. Note that some sensor
measurements overlap perfectly, as in the case of wavelength= 3, and in other
cases, such as wavelength = 1, there is some overlap in the measurements.

us to model the second moment of the distribution as well:

µ(B) =
∫

Γ(B)BdB

σ2(B) =
∫

[Γ(B)− µ(B)]2BdB

We use the functionΓ in the above computations as an
estimate of the (unknown) joint distributionP . Several com-
putational problems as well as problems due to the underlying
physical measurement process arise when we attempt to es-
timateΓ. We begin by describing some of the problems that
may arise due to the physical aspects of the two measurement
devices and then discuss computational considerations.

Figure 1 gives a schematic view of the problem. The solid
and dotted lines correspond to sensorsS1 andS2 respectively.
A Virtual Sensor can be built when there are some overlapping
sensor measurements as depicted in the figure. Notice that
if there are no overlapping sensor measurements, we are
unable to build an estimator. In real-world problems, some
measurements may overlap perfectly, while others have a
partial overlap. Generally speaking the measurements from
SensorS1 are not available at all wavelength locations.

In the event that the spectral measurements are perfectly
overlapping for allk wavelength bands and the measurements
for sensorS1 are not available at the remainingB bands,
the estimation process is more straightforward. When partial
overlap occurs between two sensors for a given wavelength,
calculations need to be performed to estimate the amount
of power that would have been measured in the overlapping
bands. This can be done using interpolation methods.

Situations such as this often arise in practice. For example
consider the relationship between the AVHRR (Advanced Very
High Resolution Radiometer) and the MODIS (Moderate Res-
olution Imaging Spectroradiometer) instruments. Specifically,
we show how to create a so-called Virtual Sensor to model
MODIS Channel 6 as a function of other MODIS channels
that are also available in AVHRR. This way, the created model
can be used to construct the virtual AVHRR channel 6 as
a function of the other channels available in AVHRR. Data
mining methods are tested and their results examined for this

task. New data mining algorithms are developed based on
these results. Because of the large amounts of AVHRR and
MODIS data available, the algorithm will focus development
on producing high-quality results efficiently and quickly with
principled estimates of uncertainty. Clearly, the construction
of a Virtual Sensor has two key components. The first is
constructing the model that generates the Virtual Sensor data
given the known data. This requires training data—data for
which there are true sensor values corresponding to the values
of the Virtual Sensor. In this example, we would use MODIS
images to generate a model that predicts MODIS channel 6 as
a function of the other MODIS channels that are also available
in AVHRR. Only channels common to MODIS and AVHRR
can be used because of the second component of virtual sensor
construction: generating the virtual sensor values. The learned
model has to be used to generate the AVHRR virtual channel
6 as a function of the other AVHRR channels.

Some preliminary studies were made to check the feasibility
of the Virtual Sensor using some MODIS and AVHRR images
acquired over the Greenland ice sheet. In particular, supervised
learning methods (e.g., neural networks) are capable of using
MODIS data to construct a model that can predict MODIS
channel 6 as a function of other MODIS channels. This model
can then take an AVHRR image as input and can construct the
virtual channel 6.

II. V IRTUAL SENSORS FORCRYOSPHEREANALYSIS

Intensification of global warming in recent decades has
caused a rise of interest in year-to-year and decadal-scale
climate variability in the Polar Regions. This is because
these regions are believed to be one of the most sensitive
and vulnerable regions to climatic changes. The enhanced
vulnerability of the Polar Regions is believed to result from
several positive feedbacks, including the temperature-albedo-
melt feedback and the cloud-radiation feedback. Recent ob-
servations of record regional anomalies in ice extent, thinning
of the margins of the Greenland ice sheet, and reduction in
the northern hemispheric snow cover, may reflect the effect of
these feedbacks. Remote sensing products now provide spa-
tially and temporally continuous and consistent information on
several polar geophysical variables over nearly three decades.
This period is sufficiently long enough to permit evaluation of
how several cryospheric variables change in phase with each
other and with the atmosphere and can help to improve our
understanding of the processes in the coupled land-ice-ocean-
atmosphere climate system. Cloud detection particularly over
snow- and ice-covered surfaces is difficult using sensors such
as AVHRR. This is because of the lack of spectral contrast
between clouds and snow in the channels flown on the earlier
AVHRR/2 sensors. Snow and clouds are both highly reflective
in the visible wavelengths and often show little contrast in the
thermal infrared.

The AVHRR Polar Pathfinder Product (APP) consists of
twice daily gridded (at 1.25 and 5km spatial resolution) surface
albedo and temperature from 1981 to 2000. A cloud mask
accompanies this product but has been found to be inadequate,
particularly over the ice sheets (Stroeve [2001]). The 1.6

MANUSCRIPT SUBMISSION FOR IEEE TRANSACTIONS ON GEOSCIENCES AND REMOTE SENSING 3

micron channel on the MODIS instrument as well as the
AVHRR/3 sensor can significantly improve the ability to detect
clouds over snow and ice. Therefore, by developing a virtual
sensor to model the MODIS 1.6 micron channel as a function
of the AVHRR/2 channels, we can improve the cloud mask
in the APP product, and subsequently improve the retrievals
of surface temperature and albedo in the product. In doing
so we will be able to improve the accuracy in documenting
seasonal and inter-annual variations in snow, ice sheet and sea
ice conditions since 1981.

III. C REATING A V IRTUAL SENSOR

In this section we outline the procedure for creating a
Virtual Sensor. At minimum, we assume that for sensorS1 we
have measurementsZ1(B1) from one image, and for another
sensorS2 we assume that we have another imageZ2(B2). The
procedure for creating a Virtual Sensor is as follows, assuming
that we need to build a predictor for channelbk+1:

1) Divide the data setZ2(B2) into a training set and a
test set.

2) Find parameters θ that minimize the
squared error (or another suitable metric)
[E[Γ(Z2(B1), θ)]− Z2(bk+1)]

2.

3) Apply Γ to the data from sensorS1 to generate an
estimate ofE[Γ(Z1(bk+1), θ)]. This is the step where
the estimation of the unknown spectral contribution
occurs.

4) Evaluate the results based on science based metrics and
other information known about the image.

The procedure described above is standard in the data mining
literature. From the remote sensing perspective, it is interesting
to see the potentially systematic differences between the
performance of the estimator on data from sensors 1 and 2.

Note that this procedure will only work if sufficient in-
formation exists to predictZ(B) given dataZ(B1). One
simple procedure for determining this is to look at the linear
correlation between the spectra. The top panel of Figure 2
shows the inter-channel linear correlation for the first seven
channels of MODIS data. Larger squares indicate stronger
linear correlation. Red squares indicate negative correlation
and green squares indicate positive correlation. The lower
panel in this figure shows the results of computing the mu-
tual information between the pairs of channels. The mutual
information between two random variables is given by:

I(x, y) =
N∑

i=1

M∑

j=1

P (xi, yj) log
P (xi, yj)

P (xi)P (yj)
(3)

This method gives a nonlinear measure of the relationship
between the channels. Again, the larger the square, the greater
the degree of relationship. In the case described in this paper,
we will be building models in order to predict Channel 6.
Notice that Channel 6 has small linear correlations with the
other channels but moderate mutual information.

1 2 3 4 5 6 7

2

4

6

MODIS Channel #

M
O

D
IS

 C
ha

nn
el

 #

Linear Correlation Matrix

1 2 3 4 5 6 7

2

4

6

MODIS Channel #

M
O

D
IS

 C
ha

nn
el

 #

Mutual Information Matrix

Fig. 2. The upper panel of this figure shows the linear correlation between the
first seven channels of the MODIS instrument for one point in time. The size
of the square indicates the degree of linear correlation. Green color indicates
a positive correlation, and red color indicates a negative correlation. Notice
that Channel 6, which is a channel that we will try to emulate using a Virtual
Sensor, has a relatively weak correlation with the other channels. The lower
panel indicates the mutual information between the same MODIS channels.
Notice that for this nonlinear measure of information, channel 6 has more
relationship with the other channels, thus giving hope that a nonlinear model
could be built to predict channel 6.

The next section describes three estimation methods that
we have used to build a Virtual Sensor: a feed-forward
neural network (also called a multilayer perceptron, (MLP)), a
Support Vector Machine (SVM), and an SVM with a Mixture
Density Mercer Kernel.

IV. STANDARD DATA M INING METHODS

There are many machine learning methods that have been
used in many different types of problems. We give a brief
review of the methods that we use in this paper.

We first describe multilayer perceptrons, a type of neural
network [Bishop, 1995]. The central idea of neural networks
is to construct linear combinations of the inputs as derived
features, and then model the target as a nonlinear function of
these derived features. Neural networks are often depicted as

MANUSCRIPT SUBMISSION FOR IEEE TRANSACTIONS ON GEOSCIENCES AND REMOTE SENSING 4

hidden
units

x1

x2

x3

x4

z1

z2

z3

4z

y

y2

y3

1

inputs outputs

Fig. 3. An example of a MultiLayer Perceptron (MLP).

a directed graph consisting of nodes and arcs. An example
is shown in Figure 3. Each column of nodes is a layer. The
leftmost layer is the input layer. The inputs of an example to
be classified are entered into the input layer. The second layer
is the hidden layer and the third layer is the output layer.
Information flows from the input layer to the hidden layer
and then to the output layer via a set of arcs (depicted in
figure 3 as arrows). Note that the nodes within a layer are not
directly connected. In our example, every node in one layer
is connected to every node in the next layer, but this is not
required in general. Also, a neural network can have more or
less than one hidden layer and can have any number of nodes
in each hidden layer.

Each non-input node, its incoming arcs, and its single
outgoing arc constitute a neuron, which is the basic com-
putational element of a neural network. Each incoming arc
multiplies the value coming from its origin node by the weight
assigned to that arc and sends the result to the destination
node. The destination node adds the values presented to it by
all the incoming arcs, transforms it with a nonlinear activation
function (to be described later), and then sends the result along
the outgoing arc. For example, the return value of a hidden
nodezj in our example neural network is

zj = g

|A|∑

i=1

w
(1)
i,j xi

 ,

where|A| is the number of input units,w(k)
i,j is the weight

on the arc in thekth layer of arcs that goes from uniti in the
kth layer of nodes to unitj in the next layer (sow(1)

i,j is the
weight on the arc that goes from input uniti to hidden unit
j) andg is a nonlinear activation function. A commonly used
activation function is the sigmoid function:

g(a) ≡ 1
1 + exp(−a)

.

ε

ε

ξ

Fig. 4. Support Vector Machine for regression. The solid line is the line
fitted to the points (represented as circles). The dashed lines are a distanceε
from the fitted line. The points within the dashed line are considered to have
zero error by anε-insensitive loss function.

The return value of an output nodeyj is

yj = g

(
Z∑

i=1

w
(2)
i,j zi

)

where Z is the number of hidden units. The outputs are
clearly nonlinear functions of the inputs.

Neural networks are trained to fit data by a process that
is essentially nonlinear regression. Given each entry in the
training dataset, the network’s current prediction is calculated.
The difference between the true function value and the pre-
diction is the error. The derivative of this error with respect to
each weight in the network is calculated and the weights are
adjusted accordingly to reduce the error.

A. Support Vector Machines

Support Vector Machines for classification and regression
are described in detail in [?], but here we briefly describe
Support Vector Regression (SVR), which we use in this paper.
In real-world problems, traditional linear regression cannot
be expected to fit a set of points perfectly (i.e., with zero
error). For this reason, nonlinear regression is often used with
the hope that a more powerful nonlinear model will achieve
a better fit than a linear model. However, this power often
comes with two drawbacks. One is that the space of parameters
of a nonlinear model (such as the multilayer perceptrons
discussed above) often have many local optima that are not
globally optimal. Nonlinear regression algorithms such as
backpropagation for MLPs often find these local optima, which
can result in a model that does not predict well on unseen data.
The second drawback is that nonlinear model fitting is often
overly sensitive to the locations of the training points, so that
they overfit the training points and do not perform well on
new data.

SVR addresses these problems in three ways. The first way
is to use anε-insensitive loss function. Ify is the true response
and f(x) is the predicted response for the inputx, then the
loss function is

MANUSCRIPT SUBMISSION FOR IEEE TRANSACTIONS ON GEOSCIENCES AND REMOTE SENSING 5

|y − f(x)|ε = max{0, |y − f(x)| − ε}
That is, if the error between the true response and the

predicted response is less than some smallε, then the error on
that point is considered to be zero. For example, in figure 4, the
solid line, which is the fitted line, is withinε of all the points
between the two dashed lines; therefore, the error is considered
to be zero for those points. Ifε is set to the level of the
typical noise that one can expect in the response variable, then
support vector regression is less likely to expend effort fitting
the noise in the training data at the expense of generalization
performance, i.e., it is less likely to overfit. In particular, to
estimate the linear regression

f(x) = w · x + b

one solves the optimization problem of minimizing

1
2
‖w‖2 + C

m∑

i=1

|yi − f(xi)|ε,

whereC is a user-determined constant that determines the
tradeoff between the closeness of the fit (second term) and the
level of regularization (first term).

The second way support vector regression addresses the
above problems is to allow some error beyondε for each
training point but minimize the total such error over all the
points. In figure 4,ξ is the additional error for one particular
point. Form training points, defineξi for i ∈ {1, 2, . . . , m} to
be the slack variables that represent the additional allowable
error if f(xi)−yi > ε (i.e., ξi = 0 otherwise) andξ∗i to be the
additional error ifyi−f(xi) > ε. In that case, the optimization
problem is the following:

minimize
1
2
‖w‖2 + C

m∑

i=1

(ξi + ξ∗i)

subject to

f(xi)− yi ≤ ε + ξi

yi − f(xi) ≤ ε + ξ∗i
ξi ≥ 0
ξ∗i ≥ 0

for all i ∈ 1, 2, . . . , m.

Note that the above optimization problem will involve
minimizing the sum of the slack variables. Also, any points
for which the error is already less thanε will end up with
zero for their corresponding slack variables. Because this is
a convex optimization problem, there is a unique globally
optimal solution.

The third way that SVR addresses the above problems is to
map the data from the original data space into a much higher
(possible infinite) dimensionalfeature spaceand calculate the
support vector machine in that space. The idea is that the linear
model in the feature space may correspond to a complicated

nonlinear model in the original data space. Clearly, one needs
a practical way to deal with data that is mapped to such a
high-dimensional space, which intuitively seems impossible.
However, one is able to do this using the kernel trick. By
introducing Lagrange multipliers and obtaining the dual of
the previous optimization problem (see [?] for the details),
one obtains the following:

maximizeα,α∗∈R − ε

m∑

i=1

(α∗i + αi) +
m∑

i=1

(α∗i − αi)yi

−1
2

m∑

i=1

m∑

j=1

(α∗i − αi)(α∗j − αj)xi · xj

subject to0 ≤ αi, α
∗
i ≤ C for all i ∈ {1, 2, . . . ,m}

and
m∑

i=1

(αi − α∗i) = 0.

The resulting regression estimate is of the form

f(x) =
m∑

i=1

(α∗i − αi)xi · xj + b.

Note that the inputs only appear as dot products in the above
solution. Therefore, one can map the inputs into a very high or
even infinite dimensional spaceH using a functionΦ : Rd →
H and the dot productΦ(xi) · Φ(xj) will still be a scalar.
Of course,Φ would be too difficult to work with because
of the high dimensionality ofH. However, there existkernel
functionsK(xi, xj) = Φ(xi) · Φ(xj) such thatK is practical
to work with even though theΦ induced by thatK is not. For
example, the Gaussian kernel

K(xi,xj) = e
−‖xi−xj‖

2σ2

gives rise to aΦ that is infinite-dimensional. However, we
do not need to deal withΦ or even know what it is because
the Φ’s only appear as dot products, which can be replaced
by K. Therefore, the new regression estimate after mapping
the inputs from the data space to the feature space is

f(x) =
m∑

i=1

(α∗i − αi)K(xi,xj) + b.

In summary, the Support Vector Machine allows us to fit a
nonlinear model to data without the local optima problem that
other procedures suffer from.

The kernel function can be viewed as a measure of similarity
between two data points. For example, with the Gaussian
kernel, the value increases as the distance between the pair of
points decreases. There is significant current research attempt-
ing to determine which kernel functions are most appropriate
for different types of problems. One such novel kernel function
is the Mixture Density Mercel Kernel (MDMK) which is
discussed in the next section.

MANUSCRIPT SUBMISSION FOR IEEE TRANSACTIONS ON GEOSCIENCES AND REMOTE SENSING 6

V. M IXTURE DENSITY MERCERKERNELS

The idea of using probabilistic kernels was discussed by
Haussler in 1999 [2] where he observes that ifK(xi,xj) ≥ 0
∀ (xi,xj) ∈ X × X , and

∑
xi

∑
xj

K(xi,xj) = 1 thenK is
a probability distribution and is called a P-Kernel. He further
observed that the Gibbs kernelK(xi,xj) = P (xi)P (xj) is
also an admissible kernel function.

Our idea is to use an ensemble of probabilistic mixture
models as a similarity measure. Two data points will have a
larger similarity if multiple models agree that they should be
placed in the same cluster or mode of the distribution. Those
points where there is disagreement will be given intermediate
similarity measures. The shapes of the underlying mixture dis-
tributions can significantly affect the similarity measurement
of the two points. Experimental results uphold this intuition
and show that in regions where there is “no question” about
the membership of two points, the Mixture Density Kernel
behaves identically to a standard mixture model. However,
in regions of the input space where there is disagreement
about the membership of two points, the behavior may be
quite different than the standard model. Since each mixture
density model in the ensemble can be encoded with domain
knowledge by constructing informative priors, the Mixture
Density Mercer Kernel (MDMK) will also encode domain
knowledge. The MDMK is defined as follows:

K(xi,xj) = ΦT (xi)Φ(xj)

=
1

Z(xi,xj)

M∑
m=1

Cm∑
cm=1

Pm(cm|xi)Pm(cm|xj)

The feature space is thus defined explicitly as follows:

Φ(xi) ∝ [P1(c = 1|xi), P1(c = 2|xi), . . . ,
P1(c = C|xi), P2(c = 1|xi), . . . , PM (c = C|xi)]

The first sum in the defining equation above sweeps through
the M models in the ensemble, where each mixture model is
a Maximum A Posteriori estimator of the underlying density
trained by sampling (with replacement) the original data. We
will discuss how to design these estimators in the next section.
Cm defines the number of mixtures in themth ensemble, and
cm is the cluster (or mode) label assigned by the model. The
quantityZ(xi,xj) is a normalization such thatK(xi,xi) = 1
for all i. The fact that the Mixture Density Kernel is a valid
kernel function arises directly from the definition.

The Mixture Density Kernel function can be interpreted as
follows. Suppose that we have a hard classification strategy,
where each data point is assigned to the most likely posterior
class distribution. In this case the kernel function counts the the
number of times theM mixtures agree that two points should
be placed in the same cluster mode. In soft classification,
two data points are given an intermediate level of similarity
(between 0 and 1) which will be less than or equal to the case
where all models agree on their membership, in which case
the entry would be unity. Further interpretation of the kernel
function is possible by applying Bayes rule to the defining

TABLE I

AN EXAMPLE OF A TABLE

One Two

Three Four

equation of the Mixture Density Kernel. Thus, we have:

K(xi,xj) =
1

Z(xi,xj)

M∑
m=1

Cm∑
cm=1

Pm(xi|cm)Pm(cm)
Pm(xi)

×

Pm(xj |cm)Pm(cm)
Pm(xj)

=
1

Z(xi,xj)

M∑
m=1

Cm∑
cm=1

Pm(xi,xj |cm)P 2
m(cm)

Pm(xi,xj)

The second step above is valid under the assumption that the
two data points are independent and identically distributed.
This equation shows that the Mixture Density Kernel measures
the ratio of the probability that two points arise from the same
mode, compared with the unconditional joint distribution. If
we simplify this equation further by assuming that the class
distributions are uniform, the kernel tells us on average (across
ensembles) the amount of information gained by knowing that
two points are drawn from the same mode in a mixture density.

VI. CONCLUSION

The conclusion goes here.

APPENDIX I
PROOF OF THEFIRST ZONKLAR EQUATION

Appendix one text goes here.

APPENDIX II

Appendix two text goes here.

ACKNOWLEDGMENT

The authors would like to thank...

REFERENCES

[1] P. C. Kyriakidis and A. G. Journel, “Geostatistical space-time models: A
review,” Mathematical Geology, vol. 31, no. 6, pp. 651–684, 1999.

[2] D. Haussler, “Convolution kernels on discrete structures,” University of
California Santa Cruz, Tech. Rep., 1999.

PLACE
PHOTO
HERE

Michael Shell Biography text here.

MANUSCRIPT SUBMISSION FOR IEEE TRANSACTIONS ON GEOSCIENCES AND REMOTE SENSING 7

John Doe Biography text here.

Jane DoeBiography text here.

